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AUTHOR'S SUMMARY

The author has chosen two aspects, namely assessment by calculation and the
dynamics of composite materials.

In the first part, the theoretical studies are reviewed, in particular
various methods for evaluating elastic constants (boundary methods using
variational calculation, methods using Airy stress function, elastodynamic
methods) and recent methods of calculation for multilayers in the plastic state.
Finally, a critical study of the various theories available for the propagation
of waves and vibrations in composite materials is made (equivalent homogeneous
media theory, microstructure theory, mixture theory, theory based on asymptotic
development, etc).

In the second part, some experimental researches are reviewed for the
calculation of elastic constants in micropolar elasticity under a static and
dynamic regime. The mechanical characteristics of composite materials are
examined along with the corresponding experimental techniques (vibration of rods,
ultrasonics, etc).
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1 INTRODUCTION

During the past five years, special composite materials - long fibres, in
particular - have been developed for the specific needs of the aeronautical and
space industry. In other sectors of industry more and more use is being made of
these materials as complements to known metallic materials and plastics. These
products are used each time it is desired to blend high mechanical performance

with lightness of structure or of mechanical parts.

We are in a phase where ability is developing very fast, and often, in the
recent past, it has outstripped knowledge. Around 1960, this situation was an
important factor for inciting researchers. It became transformed, very rapidly,
by a veritable explosion of studies and researches, some theoretical, others
experimental, in all fields. It is sufticient to peruse the technical reviews in

applied mechanics to become aware of this activity.

This interest, which borders on infatuation, is surely explained by the
desires of engineers and technicians to fill in their basic knowledge, which is
often confined to conventional materials. In our opinion it is also explained by
the fact that composite materials now stand at a privileged crossroads, to which
a large cumber of scientific disciplines are converging. This situation, unique
in the history of materials, is a very happy one and quite rightly favours the

development of inter-disciplinary studies, as Fig 1 shows.

In fact, quantum mechanics, which studies periodic lattices, has studies
which can be transposed into the field of composite materials]’z. Thus, quite
recently Kohn et aZ3 have presented the results of original studies in this field,
with a variational formula only slightly known in mechanics. Geology, which is
used to treating geological layers in seismology, has studies which are capable
of being extrapclated to composite materials. In this field are the works of
JardetzkyA, Brekhovskikh5 and Postma6 on the propagation of waves in stratified

media.

The physics of metals and viscoelastic materials, together with rheology in
general, are, naturally, of great interest in this field, with the focus on new
composite materials, such as orientated eutecties and high diffusion fibrous
materials. They can give to the composite materials specialists a certain number
of experimental results concerning polyphase materials (polycrystalline metals,
sequenced polymers, amongst others), as Mason and Skimin7 show. In return,
recent studies on composite materials (pericdic or random) could shed a new light
on the interpretation of these results (interpretation ot multiple peaks of

internal friction, wave attenuation, etc).
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Acoustics and optics have both developed, in parallel, numerous studies on

ey

composite materials. They supply researchers with numerous methods of investi-

gation, ranging from the simplest to the most sophisticated (for example, holo-

graphic interferometry). On the other hand, composite materials can form special

filters for use in acoustics.

Biomechanics, which is an expanding field, can supply a variety of natural,

M e s e W

anisotropic, composite materials (particularly bones) which are impervious or

porous. In return, it is not impossible, in the near future, that there will be

a development in the use of composite materials, compatible with human tissues,

for the fabrication of prosthesis or orthesis itenm,.

Finally, it should be noted that there is a growing 1:u: t.
matics and theoretical mechanics, in composite materials which are vither
periodic or which have random distribution. During the past ten years there has
been an outburst of various studies on such media, in all directions. Mathe-

matical physics methods also find a rich field there.

Taking into account the multiple aspects which composite materials offer,
and within the scope of the present, informal report, discussion will be limited

to some theoretical and experimental studies. 1

For the former, two aspects will be examined, assessment calculations and ¥ ]
the propagation of waves and vibrations in composite materials. This done, I am
very conscious of leaving aside many sectors whose importances are at least equal

to those of the chosen areas.

2 ASSESSMENT CALCULATIONS

The purpose of the assessment calculations is to supply elastic or visco-
elastic constants of composite materials. In the plastic region (or at breakage)

they allow calculation of the characteristics of the boundary surface. The idea

el i

is to replace the real material by an equivalent, homogeneous material.

2.1 Boundary methods

Boundary methods have given a variety of formulae ranging from the simplest
to the most complicated. They are derived from known theorems relating to
elastic potential energy. Two apprcaches are used, one kinematically allowable, i

the other one statically allowable. 1f the geometry cf the medium can be sacri-

ficed, then the simplest formulae are those of Reuss and Voigt. However, when

11

the mechanical characteristics of the two constituents (or phases) of the

material are very different one from another (elastic constants and specific

?%0¢

gravities) the boundaries are very elongated and divergent and of little usefulness.
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2.1.1 The Hill theory

. 8 .. 9 . .
This theory , arising out of the work of Kroner  gives an improvement. It

applies, particularly, to isotropic materials with spherical inclusions.

2.1.2 The Hashin and Rosen variational methods

10 . . . -
These authors have made an important progress in the field of assessment
calculations, concerning materials having hexagonal or random distributicas of

unidirectional fibres. These fibres can be hollow or solid (Fig 2).

The representative elementary volume (R.E.V.) of the orthotropic material is
defined. 1In the case of a hexagonal distribution, the admissible fields are
those which produce either a constant deformation or a constant constraint in the
space contained between the hexagon (R.E.V.) and the inscribed circle of the
cross section. The problem is restored to a classical elasticity problem, in a

cylinder of radius r, with limiting conditions of the type:

u. = E£..X. or F. = 0..n, (1)
i ij7] i ij]
Displacement on Surface density
the boundary S of forces

In this way, Hashin supplied the boundaries for the five elastic constants

in the case of hexagonal symmetry and six in the case of random distribution.

2.1.3 Variational methods using polarisation tensors

. . 1 . ..
Hashin and Shtrikman have made a further improvement. Instead of mini-
mising (or maximising) the potential energy of the admissible fields, they
minimise (or maximise) a certain function U , defined on a functional space

E(V) , where V 1is the volume and E(V) 1is chosen as the product of the space

of kinematically admissible fields and the space of polarisation constraints pij'

_ 0
o., =

i ] Cijkefre * Pij (2)

Crq aTe the constraints and the deformations and the exponent 0O

refers to the comparison medium.

where o.. and
1]

The originality of the method lies in the fact that U 1is not defined

uniquely by the material M being studied, but also by the reference material

MO , having the same geometry and being subjected to the same boundary conditions.

The step is similar to that adopted in electricity for the study of dielectrics.

.
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The statically admissible fields can also be used, together with a polarisa-

tion displacement, by prescribing a force field on S .

Alblas and Kuipers12 have generalised the results of Hashin and Strikman in

a space El(v) containing E(v) by modifying the function U .

Side by side with these variational formulae, and for industrial applica-
tions, there are many assessment methods, some semi-empirical (Chamis and
.13 . . . .
Sendecky)j ~) and others which take account of faults in the composite material

(fibre contiguity, imperfect alignment, etc), such as that by Tsai]4.

2.1.4 Elastostatic methods

Chevalierls, dealing with the hexagonal fibre network, used a representa-
tive, elementary volume, as did Hashin. He proposed the replacement of the
hexagonal (R.E.V.} contour by a circular one which maintains the percentage of

the fibres by volume. He wrvked with materials having transverse isotropy.

2.1.5 The elastodynamic method

This method is advocated by Behrens16 as being useful for long waves
applied to a variety of periodic, composite materials (lamellar composite
materials, composite materials with anisotropic fibres or with sloping elastic
constants, composite materials with peculiar symmetry, etc). Behrens uses plane

waves in the periodic medium.

The methods given above are summarised, for comparison, in Table 1, which
is taken from Chevalier]7. Fig 3 and Table 2 give some indications on three

assessment methods applied to glass fibre composite materials.

To conclude this section, it can be said that without prejudice of knowing
the elastic constants of each phase of the material and the percentage of fibres
by volume, there are now available, for materials with transverse isotropy,
methods of assessment calculation which @a-e making their mark in industrial
applications. In my opinion, the finite elements, in spite of many attempts,

have not produced any significant contributions in this field.

2.2 Assessment calculations in linear viscoelasticity

The use of the correspondence principle allows the viscoelastic constants
of a material to be obtained from elasticity formulae. However, existing calcula-
tions are only true in the context of perfect adhesion between the fibres and the

matrix and do not take into account the diffraction of waves at the interfaces.

[4

On this subject the work of Hashin18 and Chcvalierlg should be noted.
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2.3 Assessment calculations in the plastic state or at breakage

.2 C . . . .
Kelly and Davis 0 have used them for unidirectional, composite materials.

They exanined the following three distinct processes:

(a) breakage controlled by the resistance to simple fracture along the fibre

axes;
(b) transverse resistance in a direction perpendicular to (a);
(c) pure shear resistance of the matrix.

2.3.1 The MacLaughlin approach

Limit analysis has been used with more or less success by various research-

. . . . . 21 .
ers into multilayer composite materials. MacLaughlin and Batterman have consid-

ered the extreme simplified cases (high or low percentages of fibres) which,

b -

unfortunately, do not fall within the normal percentage range (60%Z fibres).

&

Majumdar and MacLaughlin22 have attempted to state the general principles of the

T oot

application of limit analysis methods in the search for a boundary surface. Their

i

equations have some weaknesses.

2.3.2 The Le Nizerhy approach

ki

. . 2 . ;
In particular, the work of Le Nizerhy 3 should be mentioned. He has

advocated a consistent method for enclosing the site of the mean constraint
vector by means of a lower envelope (approach through constraiats) and an upper
envelope (dual approach). In the case of a perfectly-plastic rigid system, it
requires static and kinematic approaches to the boundary surface (classical limit
analysis). Taking into account the fragile, ductile rupture of *he fibres,

Le Nizerhy was led to consider the calculation, using only the hypotliesis of

convexity as criterion, and with the mathematical formalism unchanged.

The material layout takes into account the periodic distribution of fibres
both in each layer and in the resin which forms the homogeneous layers. The
loading parameters Qi are introduced as being the mean constraints (with close
homothetics) in a macroscopically homogeneous volume of the composite material,
The deformation velocity vector q associated with the vector Q in the

expression for the principle of virtual powers, is expressed, this latter taking

the form:

. 6
tr(g . d)dn = Z Qiqi = V(Sl‘)oijdij (3)
=

PN
o




From the definitions of the mean quantities, aij and Eij , can be obtained an

interior envelope with potentially supportable loading surfaces, by trying to
obtain the colvex envelope of all the calculated loadings Qi and an exterior
envelope, using a classical method of approach for the envelope of a family of
planes. Fig 4 shows an outline of how the method can be used in an application

affecting multilayer composite materials with boron fibres.

3 PROPAGATION OF WAVES AND VIBRATIONS IN COMPOSITE MATERIALS

It is in this field that a large number of theoretical studies are to be

found. In order to grade them, the first thing is to compare the wavelengths A

. with respect tc the dimensions of the elementary network, d , of the composite
inaterial. If A/d {s large, the behaviour of the composite material is that of
an equivalent, homogeneous material having the elastic characteristics given by
the assessment calculations. In this context, there is available what is known
13 the theory of effective moduli. 1Tt is then possible to tackle the study of
the vibration of rods, plates and shells, on the one hand, and the propagation of
long waves in composite materials on the other. This theory finds its limitations
7ery rapidly when A/d approaches unity. It is then necessary to use more
claborate theories which could take better into account the dispersion of waves at
nigher irequencies. In this context, the theory of continuous media with micro-
dtructure appears to be the most promising. Another approach is that of the so-
called theory of mixtures which uses the interaction between the components of the
2omposlte material. Variational methods which affect periodic networks have been
oroposed by varicus authors and have given rise to recent interesting improvements
by Nemat-Nasserza. The theory of centinuous media based on asymptotic develop-

ments shoula also be noted.

3. Theory of effective moduli

3.1.1 Wave propagation

The mean constraints aij and the mean deformations Eij in a representa-
tive elementary volume are defined and the elastic constants of the equivalent,

anisotropic, homogeneous medium, C*'ki are calculated
. 1]

(4)

= *
i C ket

In an indefinite medium, the studv of wave propagation using equation (4)

does not allow the diq?jrsiun of the waves to be taken into account. However,

Ty o |

11

b
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this theory does provide a ra~id, mechanical characterisation of the medium by

ultrasonic methods using long waves.

3.1.2 Vibrations of rods and plates

A certain number of classical vibration studies for isotropic rods and
plates can be transposed to composite materials. For rods, these inciude rhe

. . . .2 . 27 .
work of MchvenZS, Le Nizerhy-Vinh-Chevalier 6, Vinh~Nugues and Touratier

relating to approximate theories on rods.

It is a matter of extending the known approximate theories vi Hermann-
Mindlin, of Volterra (longitudinal vibrations), of Timoshenko's method (flexion

. . 2 . ) .
vibrations) and of Barr-Engstrom's 9 method (torsional vibrations).

It should be noted, in passing, that in general the dispersion of waves for

the three modes of decoupled

materials than for isotropic

This dispersicn is due

vibrations is much more pronounced for composite

ones.

to the strongly anisotropic character of the medium

studied, which is shown, particularly, in the high ratio between the longitudinal
Young's modulus, El , and tne shear modulus u :

El/u ~ 20 to 50, instead of about 3, for isotropic materials.

Here and now, for the choice of displacement fields, polynomials of a high
degree must be used to translate, correctly, the dispersion of phase and group
velocities. Applying dynamic torsion to beams of rectangular cross sectionzl,
the Saint-Venant theory, which relates to the buckling function, reaches its

limits in the study of the higher modes.

Rods (whose axes are not confounded with axes of symmetry of the material)
give rise to coupled waves. Several approximate theories exist, such as those by
Abarcar and Cunniff3o and Le NizerhyBl. They all require complementary studies.
The method advocated by Mindlin32 of the double series for the displacement

~omponents should be noted.

u = xmxnum’n(x t) = S SRTIaAY '5)
i 234 e X%34g -

is the beam axis and t 1is tiwme. The number of terms taken in equa-

where xI

tion (5) Adepends upon the modes of vibration studied. For plates, the well~known




approximate theory by Mindlin has been extended to composite materials by

Whitney33.

. 70 .
Amongst the work in France should be noted that of Verchery on composite
plates in a static state. This work is capable of being extended to the dynamic

state.

3.. Theories of continuous media with discrete structures

A number of theories with microstructures have been proposed, amongst which

are "nhe works of Mindlin and Tiersten34, the theories of Toupin35 and Truesdell36

. . 37 .
and the so-called micropolar theory of Eringen” . This latter tends to general-
. . . . . 38 .
i1se the other theories. A comparative study by Eringen brings out the

dirferences between these theories (restrictions imposed on the spatial micro-
4 = le u
Tk ‘"kim m, 2

presence of the couple Zk per unit mass and of the acceleration U in the

behaviour laws; omission of the micropolar rotatory inertia term; final depen-

rotaticn vector where u is the displacement vector; the

dence of the constraint vis-2-vis the applied loads and the inertia, etc).

Most of the theories on microstructures are concerned with linear,

isotropic materials.

As regards the propagation of waves in an indefinite medium, the following

theoretical results by Eringen should be noted.

For plane waves, Fig 5 shows that in the direction of propagation, n ,
there is a microrotational plane wave in addition to the classical longitudinal
wave. For the microrotational wave, propagation is only possible if the

frequency exceeds a certain cut-off frequency, Fig 6.

For transverse waves, in addition to the classical transverse displacement
wave, U , Eringen has found a wave with microrotation ¢ which is orthogonal to
both th. direction of propagation, n , and the displacement U . This latter
transverse wave with microrotation only exists for frequencies greater than &
critical frequency. Below this, it degenerates into an evanescent wave attenua-
ted by distance. For surface waves, Eringen and Suhubi38 have predicted a second
type of dispersive wave. Here, too, no experimental confirmation has yet been
put forward. Amongst the theories for discrete structures applicable to
composite materials should be mentioned two proposals, one by Hermann, Sun and
Achenbacth, known as the effective stiffness theory and the other, the

Drumheller-Bedford4| theory which uses a second order approximation.

=
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3.2.1 Theory of effective stiffness

This was developed, originally, to interpret dynamic effects such as the
dispersion of waves in stratified media (multilayers). Fig 7 represents a
rectangular disposition of unidirectional fibres in a plane cross section. In a
grid (k, #) it is a matter of adopting series for displacements. The following
developments can be adopted fairly well in the fibre (f) and matrix (m):

f(k,2) f(k,)

Ui(k’l) = ﬁik’g) +r cos 6. Vos +r sin 6. Vay (fibre)
L B e Rt B
+ (r - a) cos ® .wgﬁk’l) + (r - a) sin .w?ik’g) (6)

with r > a matrix .

The physical interpretation is simple. Gi(k’z) represent overall displace-
ments and W:gk’g) (n = 2, 3) represent local displacements. The two types of
displacements are defined for discrete values of x, and X, and are continuous

2 3
functions of the variable x| and time. Since it is not possible to satisfy,
exactly, the conditions for continuity of the displacements at the interfaces
between neighbouring cells, Sun and Achenbach suggest a continuity for the mean

displacements. -

On the basis of these series developments (which use Legendre polynomials)
they have evaluated the kinetic and potential energies whose means are defined at
the fibre centres. The transition from a discrete lattice to a continuous,
homogeneous model is accomplished by defining the fields for the kinematic and
dynamic variables which are continuous for all the coordinates. Thus the energy
deformation density contains not only the effective moduli terms, shown
previously, but also terms with constants arising from combinations of the
geometric and elastic properties of each phase. The equations are obtained by
the Hamilton principle used in conjunction with the continuity relationships and

Lagrange multipliers.

As a particular case, the researchers have studied multilayer plates where
each layer is isotropic. Fig 8 shows the effective stiffness theory with a first
order approximation. It shows that for the phase velocity agreement is good for

very low modes (number of wave k < 2 with respect to the exact theory of

Rytovao).

PR - - "N




The model with a first order approximation translates, correctly,

dispersion of shear modes but not the other modes.

Fig 9a, gives a better approximation to the exact theory.

3.2.2 General theory of effective stiffness

As an application of the previous theories, the problem of a semi-indefinite
or finite body subjected to a permanent or transitory displacement and/or the

limiting constraint conditions, is of great importance.

formulated by Bedford and DrumhellerAI

A second order approximation,

These problems have been

They can be applied to the highest order

of effective stiffness theories. These two authors introduce an external, plane

surface and systems of coordinates X, X,

. . . £
composite material, as well as local coordinates (x], X

origins are situated on the fibre axis. The displacement vector,

kth layer can then be written as:

fk Afh(-f & t)
u = U upeX,,

The limiting conditions for the displacements in terms of the distribution of

(Fig 9b) relative to a multilayer

) and (n, ) whose

~

u, (@,8,t
l(,,)

fh

in the

(N

specified displacement Ufk(E,t) at the external boundary of the layer k are:

~fk

fk

Then ﬁik and U, are developed in terms of

of the same order as the development of displacement vectors in the theory

adopted.

By equalising terms in the same power

is obtained:

ufk(0,0.t)

il

(0,0,t)

(0,0,¢t)

of

_ =2fk -
Yy (xi”‘z’t)a o = 4 (Gs,0)

(8)

and the development is

s , a set of limiting conditions

(t)

(t)

(9)

7%0C 11
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This procedure is direct and shows the relationship between the limiting condi-
tions and the distributions of displacements and constraints over the external

surface.

The problem of the accuracy of the effective stiffness theory, with its
limiting conditions, has been discussed by Bedford and Drumhellerél. They have
shown that the microstructure theory, with a finite number of degrees of freedom,
has only limited possibilities for modelling the distributions of displacements

and constraints at the boundary.

3.3 So-called theory of mixtures, or of media with interactions

This is a matter of a theory used, originally, in geology and recently

adapted to composite materials by Lempriéreaz, Bedford and Stern43 and Hegemier44

It is assumed that each phase of the composite material is subjected to
individual deformations. The microstructure of the composite material is shown
by the interactions between the constituents. Some indications of how this

method is applied to multilayers will be given here.

By integrating the equations of movement in the deformation plane we have:

0(ct) u(a)

ij.i = PU,ee (10)
where a indicates one of the two phases of the medium, with respect to the
variable xga) in the direction of the thicknesses h(a) Equations are
obtained of the form:

(a) 2 (a)
30 e 39 u e
W@ JUE @ @ 2N @, @) (i
9x 2 13 1
1 at
where the exponent e 1indicates a mean.
(a)e h(a) (a)
_ 1 (a)
= h(a) j dx3 (12)
0
and assures the continuity of the term ng) , which is asymmetrical with respect
(a)
to X3 :




(ry ) (2) (2)
- = - *
113(x1,h,t) T]3(X,h,t) 113(x],t) . (13)
Equations of movement are obtained, of the form:
(ry () n
30?1 p BzuT
-0 = p B (14)

o%, st ¢

where the exponent p indicates partial constraints or displacements.

(o) (o)) (o) (o) ()

o?l =V ac pp = V p (15)

(a) () (1) (2)
vV = h/(h+h) ’

(a)

where V is the volume fraction,

(1 (2)
DCS = T?3/(h + h) , (16)
with
(a) (a)
u? = u? . a7)

Thus the pce term in equation (14) represents the transfer of the amount
of movement from one phase to another. Hence it corresponds to a volume force

equivalent to an interaction due to shear at the interfaces.

The basic problem is the determination of these interaction terms pCB and
the equations of behaviour for each phase of the composite material. For this,

. 44 . .
Hegemier et al have suggested an asymptotic development as a function of X

3
for the constraints and displacements.

The equations of behaviour are of the form:

[
-
o
o
&
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Q) ), (2) N

e e
p _ Ju Jdu
G T Cn(ax]) +C12(8xl)

f (18)
(2) M (2)

e aue
_ Ju 1
oy T 012<ax1) +sz<ax]) J

which express the constraints in terms of the composite material constituents and

the displacement gradients in each phase.

Figs 10 and 11 show the phase velocities in terms of the frequency for two
types of multilayer composite materials. The agreement between theory and

practice is good for the low frequencies.

3.4 Theory of continuous media with microstructure based on asymptotic

developments

Several formulae exist for the propagation of waves, such as those of

Hegemier and of Nayfeh47.

The method given by Nayfeh is of particular interest when the number of
layers exceeds three in each cell and the pattern is repeated particularly in one
direction. For lack of space, only the steps adopted for a unidirectional

problem will be given here.

(a) As in the theory of mixtures, the equation of movement is integrated with

respect to the variable x 1in each elementary cell (0 < a < m).

(b) By assuring the conditions of continuity between one cell and another, the
relationships are sought which give the constraints oik)(O) and uik)(O) , the
displacements at the median plane of each layer.

(¢) Next, the constraints and displacements found above are developed as

yék) - x;k)

series, as functions of the local coordinate , where x 1is the

ik) is the local coordinate in the o layer of the kth

overall coordinate and x
cell., Thus a range of finite difference equations is obtained for the spatial

and differential coordinates with time.

(d) Then a small parameter € = A/f 1is introduced, where A 1is the total
thickness and % 1is a macrodimension of the problem, which could, for example,
represent the wave length X . When ¢ » 0 the phase velocity obtained is that

given by the theory of homogenised, non-dispersive media.




Amongst the approximate theories put forward up to now with models of wave
dispersion for the lowest modes, the method of asymptotic development gives a

greater accuracy than do the others.

3.5 Variational methods

Kohn3 has applied the theory of Floquet, Bloch and Brillouin to composite
materials. Lee48 has recently reviewed various variational methods in detail.
The variational principles are developed in an integral form in a cell which
represents the representative elementary volume. The deformation energy and the
complementary energy have been used. In passing from the fibre to the matrix,
the discontinuities in certain constraints and deformations at the interfaces are
taken into account. A Rayleigh-Ritz procedure has been applied to calculate the
dispersion relationships for any propagation direction whatsoever. So far as is
known, the studies by Lee have been confined to multilayers (periodicity in one
direction). The credit for a generalisation of such methods and for an applica-

. . 2
tion to several cases rests with Nemat-Nasser ’

who has, in addition, proposed
a dual Rayleigh coefficient (based on the constraints). For various situations
(pronounced density discontinuity, discontinuity of the elastic constants) these
variations of the coefficients show the Rayleigh coefficient to be adequate. A
new Rayleigh coefficient, based on mixed fields, appears to be very effective and
gives the upper boundaries for particular values with needing recourse to the

usual orthogonalisation of the test functions.

3.5.1 The Rayleigh displacement coefficient

This coefficient is:

A = (nu',u')
R (pu,u)
(19)
4
(pu,u) = jpu.v*dx
~}

where p 1is the density,
u is the displacement in reduced variable,
is the elastic coefficient,
indicates the conjugated complex quantity,

indicates differentiation with respect to x ,

[
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The periodicity of the medium is expressed as:

u(d) = u-hei? 20)

where Q 1is the wave number.

If L 1is positive, auto-associated operators, for harmonic waves we have:

- -1 - -
Lu = S [nx)u'] Au i< x < § (21)
At the points Xj (j = 1,2) , of discontinuity n , we should have the
following conditions:
- - + + )
nxJu'(x.) = nx.)u'(x.) j=1or 2
] J ] J
(22)
X, = 1im(xj * g) e >0

>0

Equations (20) and (21) can be satisfied by taking for the displacement:

u = Ua exp i(Q + 2ma)x . (23)

The method of calculation is the classical one:

X (u)
3u*
a

= 0 a = 0,x1,...,2M" . (24)

When n has discontinuities or varies very rapidly, this method is

ineffective.

3.5.2 The dual Rayleigh coefficient

Assuming that:

and Do = u' (25)

O j—-

we have

(Re")' + Do = 0 , -} < x <} (26)
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a(d) = o(-})elQ . (Re')__, = (RO') . (27)
x=} iQ
x=-}e
The dual coefficient is:
M
= _ (Rg', oY - .
AR = ooy g = ‘ Sa exp i(Q + 2ma)x . (28)
a:
XR is made stationary:
aXR(a)
_8-57"—— = 0 ’ a = O’il y "-tM'
o
When R = I/p 1is not continuous, XR is not effective.
3.5.3 A new coefficient
Taking the mixed fields o and u we obtain:
_ {o,u + {u',0) + (Dg,q)
XN B {pu,v) ’ (29)
It can now be shown that:
)\R(u) = )\N(u,o) (30)
and that
(P _ L . .
XR = AN > AP , 1f n 1s a constant .
3.5.4 A new dual coefficient
= _ {W,g") + (", W) - (pW,W)
oS (Do,o) G
with
XR(G) > XN(G,W)
and if p is a constant:

|9
-3
N
o
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3.5.5 Improvements in the new coefficients

This has led Nemat-Nasser to propose a modification to the test functions
U and 0 , as in equation (22), so that the following continuity condition is

not violated.

R(X.) . 0(x.) = R(x1).o'(x) with j = 1 or 2 . (32)
] J J J

na' and R5' are continuously differentiable in [-},}

Moreover, he ensures that the new test functions u and o are such that

For the unidimensional problem the modified functions are:

M’ i X
u = S, j(exp iQ- 1)-1 / D(£) exp 1(Q+ 2ma)&de + j D(£) exp i(Q+ 2ma)&dE
a=0 ! -
..... (33)
M’ i X
2 . -1 . [ .
g = Wa (exp 1Q-1) [ p(E) exp 1(Q + 2ma)EdE + j p(E) exp i(Q+ 2na)&dg
a0 <} -4
..... (34)
and a new lower boundary, XE , and a new upper boundary, XN , are obtained at

the price of an improvement in u and o

. 50 . .
Nemat-Nasser, Fu and Minagawa have alsc provided boundaries for the
natural frequencies in three-dimensional problems. These researchers have made

numerous applications of the method, which indicates the interest shown in it.

. 51 .
Mention should be made of the work of Gotteland™ who has carried out a
systematic study of the various variational formulae with a view to the applica-

tions to multilayer plates by finite elements.

3.6 Various models which take wave characteristics into account

The propagation of waves in composite materials is always accompanied by a

attenuation. This can be explained by:

(a) the periodic character of the lattice;
(b) the viscoelastic properties of the constituents;
(c) the diffraction and diffusion of waves by the fibres, by interfacial

defects, by holes in the matrix, by bad fibre alignment, etc.
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Taken as a whole, the problem is, theoretically, of great complexity. 1In
practice, there have been only tentative, partial explanations of certain aspects

relating to wave attenuation.

3.6.1 Modelling by analogy with a continuous medium

This has been suggested by Drumheller and Sutherlandsz, using the results
obtained by Brillouin] for discrete lattices based on the Floquet-Bioch theorem
relating to the propagation of a harmonic disturbance. The wave has a periodic
dispersion spectrum. The frequency curve, in terms of the wave number R = 27/A,
where A 1s the wavelength, has frequency bands in which no wave can be propaga-

ted and for a given value of f there is an infinite number of values of k

The classical dispersion relationship can be used for the lattices, giving:

@z~ 1n?

4z

z+ 1’

+
W7 cos (wt ) -

cos (kh) cos (wt+tr) (35)

where is the ratio of the acoustic impedances of the two layers,

+ . . . .
is the sum of transit times in the elementary cell,

Z
t
tr is the ratio of the transit time difference to the sum of transit time,
h

is the total thickness.

By analogy with a continuous medium, the properties of this latter can be used,

and are as follows:
(1) frequencies filtered in the by-pass filter;

(ii) at almost zero frequencies, the lattice and the composite material have the
same longitudinal phase velocity. Then equation (35) is developed and

gives the relationship for the dispersion of waves from the lowest mode;

(1i1) a redistribution of masses 1is undertaken in the lattice to adapt the
dispersive characteristics of the ideal, periodic lattice to the composite

material.

This method, which is very simple to apply, can be used to study shock

waves.

3.6.2 The Sve method

The Fourier integral has been used to simulate the remote field of
constraints near to shock wave fronts by assuming that the predominant modes are

those with the lowest frequencies. Dispersion is included by adopting a complex

7907 11

wave number. Sve studies the differences and the common points between the
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geometric dispersion and the spatial attenuation of the waves. He uses the Airy

function.

3.6.3 Interpretation of dispersive effects by the Boltzmann relationship

. 54 . . .
Christensen has suggested the use of dielectric theory as a possible
approach, since the two basic mechanisms of dielectrics have a certain analogy

with those of composite materials:

(1) there is the loss due to displacement of loads which are connected,

elastically, to an equilibrium position;

(ii) there is the loss due to the transition of loads or dipoles between the

equilibrium positions, separated by a potential barrier.

According to Christensen, case (1) can give a direct characteristation of
elastic media with periodic layers and case (ii) has been transposed to a

homogeneous, viscoelastic medium,

In this way, Christensen has used this analogy to re—examine the dispersion

relationship obtained by Kohn in the form:
w = C.k~ = Bk (36)

where C0 and R are parameters which express the layers and their geometries :

in terms of the elastic characteristics. .
He has also examined the random medium by adopting a relaxation function of

the form: ;

6ty = Ge /T, Gq

where G, T and G are unknown parcrameters which are to be determined. He 3

obtains the attenuation in the form:

N = (37)

where Cmax is the maximum wave velocity, 3

pys P, are densities,

G,» G, are the moduli of elasticity of the layers,
iy h2 are the thickness,
w 1s the pulse rate.

h
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Fquation (37) allows the order of magnitudes of the attenuations of waves in

magnesium and aluminium to be remeasured.

3.6.4 Diffraction and diffusion of elastic waves

As far as I am aware, very little study has been given to this problem,
wvhen its complexity is taken into account. It is a matter of studying the
diffusion of waves due to the frequency of fibres sunk in a matrix. Bose and

a155 hav: examined the case of the transverse wave being propagated at right

M
angles to the fibres and having the parallel polarisation of the fibres. It is a

case uvf random fibre distribution.

These authors have been able to evaluate the complex wave number of the
composite material. The imaginary part of the wave number is related to the
geometry of the fibre lattice. They have been able to calculate the specific

absorption in terms of the fibre concentratien.

4 SOME EXPERIMENTAL STUDIES

4.1 Measurements of elastic constants in micropolar elasticity

4,1.1 Static measurements

It has been shown, earlier, that certain microstructure theories have been

used, successfully, in the study of wave dispersion.

A serious problem arises, namely how, within the scope of these theories,
can the elastic constants of materials be evaluated in sufficient numbers?
Experimentally, this question underlines some difficulties. 1In research into the
laws of behaviour in micropolar elasticity, certain attempts have been made which

merit further notice.

. . 56 e . .
Thus Gauthier and Jashman have made measurements on an artificial, micro-

polar medium tormed from aluminium particles in an epoxy resin matrix. According
to Erincen, the behavioural laws are of the form:
d..o0= e 8.0+ (po+ Xe, . +oue, ., 38
11 kk 1) 1] . 1] (38)
m.,. = ¢ S.. + E¢. .+ ve. . (39)
1] k,k 1] 1,] J,s1
where Oij is the constraint,
Eij is the deformation,

@ is the microrotation vector,

vh0¢ L1
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mij is the restraining couple,
A and p are the classical Lamé moduli, and
X, a, 8 and y are the form constants inherent in the micropolar theory
to be determined.
For an isotropic body six elastic constants have to be evaluated. From equations
(38) and (39), X has the dimensions of pressure whilst a, B and vy have the

dimensions of forces (couple/length).

The measurements can use well-known methods of classical elasticity
(traction, torsion, shearing, circular flexion, etc) for rods and plates. The
analysis formulae are more complex, for example in the case of traction which

gives Young's modulus and the Poisson number in the following forms:

E = (2u+X)0h+ 20+ X + 20+

(40)
X

(2% + 2u + X)

For torsion and flexion it has been possible to demonstrate the character-
istic lengths which allow a definition of the limits within which micropolar

elasticity measurements hold good.

Gauthier has shown that in resolving three problems at the limiting

conditions he has been able to evaluate the six constants.

For shear measurement, use can be made of holographic interferometry. For
torsion, the displacements can be measured by double exposure hologram and a
strongly-coherent laser beam. These optical meihods avoid physical contact and

hence local disturbances in the areas of interest.

4.1.2 Dynamic measurements

Certain methods of physical measurement can be used to evaluate the elastic

constants. A list of these methods is shown in Table 3.

In general, the optical methods given are concerned with short wavelengths
and can be used when the characteristic micropolar wavelengths are of the same
. . . , -7
order of magnitude as the dimensions of the lattice (= [0 ° cm). It should be

noted that Raman spectroscopy 1is reserved for crystals.

57 . . . .
As Askar has so rightly noted, there is a large quantity of experimental
results on crystals which await interpretation by theoriticians and experimental

workers in the field of continuous media.

A mhant WD oo s maiim e ne




26

Amongst the experimental methods which can show up certain 'micropolar

effects' (Table 2), ultrasonics and hypersonics are very serious candidates.

4.2 Mechanical characteristics of anisotropic composite materials

The techniques for measuring the elastic constants of non-polar elastic or
viscoelastic bodies tend to increase. Particularly in the aeronautical field
there are important developments in static or dynamic experimental techniques.
Rods, plates and tubes have been used to this end. It should be mentioned that
the measurement of certain 'non-diagonal' elastic constants (that is to say which
are not situated on the diagonal of the corresponding matrix) avoids couplings
(flexion-torsion, traction-torsion, etc) in quasi-static tests. If ultrasonics
are used, it will be possible to use coupled waves whose use is more delicate
than decoupled waves, as Curutcharysg, Vinh and Garceau59 and Markham60 have

shown.

Fig 12 shows an elasticimeter with alternate flexion and torsion, which
allows Young's moduli (Ei)’ shear moduli (uij) and the coupling constants of
composite materials to be determined on samples of rectangular (or circular)
cross section. Taking into account the influence (which is not negligible) of
the rotational inertia effect (in flexion) and the shearing effect, the equations
of motion are of the Timoshenko type with, possibly, coupling term326. In alter-
nate torsion, for rectangular cross sections, warping27 must be taken into

account.

In other respects, the use of samples of finite length complicates

research into the natural modes, even by small amounts.

Fig 13 shows some experimental equipment which uses ultrasonicsSS. Fig 14
shows the slowness (inverses of phase velocities) diagrams relating to a uni-
directional Kevlar (fibre in aromatic polyamide) composite material. Tt can be
seen that for an angle of incidence of more than 130, the longitudinal wave is no
longer transmitted. The composite material therefore plays the role of a very
directional spatial filter. The use of coupled waves for the evaluation of the
last 'non-diagonal' constant gives rise to Fig 15. The error perpetrated on the

value of the constant can have a strong influence on the value of C

C1313

4.3 Study of wave dispersion by ultrasonics

1133

Propagation of expanding ultrasonic waves perpendicular to the layers has
shown both waves of low mode (acoustic branch) and those of a higher mode (so-

called optical branch). Fig 16 shows that the composite material behaves like a

cut-off filter in certain frequency intervals. Tre effect of this property is to

7%0C L1




modify the frequency spectrum of the progressive wave, as is shown in Fig 17

(from Robinson and Lippelmeierél).

The wave dispersion can be shown, easily, by using several transducers

having a range of natural frequencies.

4.4  Degeneration of ultrasonic waves

A decoupled wave, applied to a composite material, and being propagated
along a direction of symmetry of the material, can be transformed into coupled
waves (transversal and longitudinal waves). This happens if the fibres undergo
directional variations. Hence this wave transformation can be used to study

certain faults in fibre alignment (Weistman62).

4.5 Geometric and viscoelastic dispersion

Even in an indefinite medium formed from unidirectional fibres, the
geometrical dispersion of the waves can be explained by fibre size (which behave
as wave guides) and by their periodicity. The viscoelastic type of dispersion is
due to the matrix (often of resin). These two types of dispersion exist together
and can either act in the same sense or can neutralise each other, depending upon

the modesss’sg.

4.6 Elastic waves in limited media

The study of surface wave563, of plate waves, of Love waves (surface waves
with transverse polarisation which are propagated between a substrate and a layer)
and of Stoneley waves (interface waves) has not given rise, as far as I am aware,
to theoretical and experimental studies on composite materials. The studies
would certainly be more refined than those done on homogeneous, isotropic media
but they could lead to very interesting applications, particularly in the study

of adhesion between the layers of composite materials.

4.7 Evidence of special waves related to the micromorphic nature of the medium

Section 3.3 drew attention to particular waves with microrotation
(longitudinal or transverse waves). As far as I am aware, these waves have not
yet been demonstrated in the ultrasonic region. Special transducers will have to

be designed to show this effect.
4.8 Shock waves

These are the ones most used for composite materials. Various methods have
been adopted, such as those of Whittier and Peck64, Sve and Okubo65, Tauchert and

66 . . .
Moon ~. The same techniques are used as for conventional solids. Amongst others,

%
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these include methods using a mechanical projectile, explosive charges, shock
waves in a gas and waves in a shock tube. The shock wave is propagated in the
composite material and detection of the wave is done on the opposite face by a
capacitative displacement pick-off, Fig 18. Wire resistance strain gauges can be

embedded in the composite material to record the waves at various points.

Large amplitude transitory waves can be generated by the 'flying plate
projectile' technique. This plate is made from a homogeneous material, mechanical
and polished to form the head of the projectile, which is launched by a gas gun.
The composite, in the form of a thick block, is attached to two adaptors
("buffers') which serve as connectors and which have been aligned, previously,
with respe~t to the flying plate. Displacement measurements can be by the short-

circult contact method.

Piezo-electric crystals can be used or a laser interferometer (Michelson,

with Doppler effect) which measures the displacement through a window67.

Amongst the theories given earlier, it is the theory of media with inter-
action which is seen to be the most successful in the study of shock waves
(equation (18)). The slower progress with the other theories is explained by the
fact that these latter contain parameters from undetermined behavioural laws.

The evaluation of these constants (or functions) by analytical or experimental
methods 1s very critical, although certain attempts (such as those mentioned in
section 4.1) are promising. Fig 19 shows the good agreement between theory and

experiment in a shock test on carbon-phenolic resin composite materials.

4.9 Mechanical tests on bones

Bones are really biological composite materials. Experimental and theor-
etical studies devoted to composite materials can be transposed to the

biomechanics of solids.

The anisotropy of bones is very pronounced and, moreover, is often compli-
. 68 .
cated by a range of elastic constants. Guynemer has made measurements to give

the mechanical characteristics of bones.

Within this field, subsequent special studies should take into account the
specific characteristics of bones. Rayleigh waves in cylinders could be used to

study cortical layers.
5 CONCLUSIONS

Taking into account the fractional aspects of the composite materials

¥%0Z 11

considered here, it is difficult to draw any firm conclusions. At best, it can
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be said that in theory numerous formulae can be found for the study of waves and
vibrations. The most simple versions of the theory of elasticity in microstruc-
tures, known as the effective stiffness theory, are capable of being used with
success in multilayer composite materials. Variational methods are very
promising. The same is true of asymptotic methods and the theory of media with

interaction.

To my mind, the variety of theories available could cover all the experi-
mental requirements without the necessity for further development. Any lack is
with the experimenters, because the absence of exact solutions in numerous
problems requires experimentation to decide between the approximate theoretical
solutions proposed. It is likely that more and more they will be forced to use
theories with microstructures. The use of multiple scales, one over all and the
other for the elementary lattice, is an approach which compels recognition, more
and more, to show up certain fracture or delamination phenomena which are of a
microstructural order. To this end, attempts to remain within the framework of
the classical theory of continuous media are already reaching their limitations.
A more careful study of the field of constraints by means of a microstructure
tiieory, of higher order than the existing ones, should assist experimenters to
glve a better explanation of the phenomena which arise at the matrix-fibre

interface level.

Various physical methods (in particular optical methods and those using
very high frequency ultrasonics) have not been used for composite materials.
These new methods, as yet little used by engineers, could be capable of explain-

ing certain acoustic phenomena already predicted, theoretically, by Eringen37.

Hence composite materials offer a wide field of choice for interdisciplin-

ary work between physicists and engineers.

Finally, at the calculation level, the question is to know whether or not
the various existing theories can produce numerical solutions which are more
crfective than those obtained by direct examination of material in finite

elements.
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Table 1
SUMMARY OF THE ASSESSMENT CALCULATION METHODS, TAKEN FROM CHEVALIER
Nature Nature of
of the Author the composite Advantages Disadvantages
method material
Isotropic. Limits indepen— | Limits too wide
Slightly dent of material | if the phases
different geometry. Docu— | are different
Hill characteristics | mentary results.
Any interfacial
bonds. Pedago-
Variational gical interest
(limits for . Transverse Use of material Relatively
modules) Hashin—- . . .
Rosen isotropic geometry. Docu- compllcaFed
mentary results calculations
Isotropic (and Limits closer Demonstration
Hashin- even multi- to those given difficult,
Shtrikman phase) by Hill needing calculus
of variances
Tetragonal Applicable to a | Needs a large
Pickett, orthotropic or large number of | computer. Numer-
Leissa transverse materials. ical results.
and isotropic Rigorous method | Long calcula-
Clausen tions, errors
possible
Elasto-
static Transverse Very simple Approximation of
isotropic documentary the limiting
. results. conditions. Only
Chevalier- . .
. Possible exten—~ | applicable to
Vinh .
sion to the transverse
viscoelastic isotropic
region materials
Anything, but Very simple Transposition to
but must be documentary the viscoelastic
Elasto- periodic results. region difficult,
. Behrens . .
dynamic Applicable to Inapplicable to

a large number
of materials

short wave case
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Table 2

DIFFERENT VALUES OF THE ELASTIC MODULI OF A
SILICON-PHENOLIC RESIN COMPOSITE MATERIALS

WITH 637 OF FIBRES (UNITS daN/mmZ)

‘ s Cheval;ir- Pickett Behrens6 Ultri:sonlc
ijks Vinh solution | solution | mE@Surements
solution Vinh
E“” 1616 1684 1651 1740 £ 30
C +
C”22 718 667 683 756 £ 50
c +
C”32 569 571 569 680 * 80
c 4 +
C3333 5140 5141 5142 4200 100
c +
C2323 515 519 515 570 12
c +
01212 449 509 483 492 * 10
. 2
Fibre: E2 = 7500 daN/mm" . v, = 0.2
Matrix: E = 371 daN/mmz. v, = 0.34

1
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o
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Table 3
T SOME POSSIBLE METHODS FOR PHYSICAL MEASUREMENTS

Physical methods Remarks

X rays

Neutron diffraction Measurements In Kij

Measurement of specific heat

Transparent bodies

Infrared spectroscopy Measurements of K
ij

Transparent bodies

Measurements of K..
1] ]

Raman spectroscopy

Measurements of Cijkl

Coupling between translation and molecular modes

. K.. i .
Ultra- and hyper-sonics and 1} coupling terms

Crystals. Faraday effect, rotational ability (?)
Brillouin diffusion Coupling between the subdued optical mode and
acoustic phenomena

For anisotropic, micropolar media the elastic constants are defined by
the expression for deformation energy:

W = Ic.. e..e + K. (r. - vy.) +if..  e..(r, =¥
“Uijke i) ke ? 13( i wl) 2Tijk IJ( k l‘lk) 1
where eij = 1infinitesimal deformation

r, = le, (u - u ) = macrorotation

i imn' n,m m,n j
wi = microrotation

. = permutation tensor

imn

=
3
N
()
£
&~
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Figs 1&2
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atériaux Composites
Géologie (etc)

Physique des Métaux (etc)
Plasturgie Chimie, etc
Optique (etc)
Acoustique (etc)
Biomécanique (etc)
Physique Mathématique (etc)
Mécanique (etc)

Mécanique Quantique (etc)

composite materials

geology (propagation through stratified media)
metal physics (new materials)

plastics. Macromolecular chemistry

optics (Moiré-holography, etc)

acoustics (vibrations, ultrasonics, hypersonics)
biomechanics (bones)

mathematical physics (disturbances, etc)
mechanics (micropolar continuous media)

quantum mechanics (network dynamics)

Fig 1 Outline of interdisciplinary studies which affect composite materials

Matrice

Fibre

Vide

a) Répartition hexagonale b) Répartition aléatoire
Key:
Ma%rice = matrix
Fibre = fibre
Vide = empty (space)

Fig 2 Cross-section of a composite material in the plane normal to
the fibre axes

(a) hexagonal distribution
(b) random distribution




Figs 3&4
8000 Solution CHEVALIER-VINH {15]
NE 0 Solution PICKETT numérique I
ZEeooo. !
] — . — Solution BEMRENS (16] /'
O, .
g {
= 40004 s
=
é 2000
s
Concentration de fibres Sz'%
Key: i a
Modules C13K1 ¢n daN/mm? = E1KT nodules in daN/mm?
Concentration de fibres Sos % = concentration of Sy fibres, %
= Chevalier-Vinh® solution
) = Pickett numerical solution
--------- = Behrensl6 solution
Fig 3 Elastic constants C1Jk] of a composite material with
hexagonal symmetry
Fibre: Ep = 7500 daN/mn?, vp = 0.2
Matrix: E° = 371 daN/mm¢, ] = 0.34
)
Verre époxy
I (+3¢° 90°) u_‘z/c' v
Ke

o
=
~ .
4]
m
b=
2
<
0

glass epoxy

experimental points
upper 1imit
Tower limit

Fig 4 Determination of the 1imiting surface of a multi-layer glass-epoxy 3
composite material by 1imit analysis <
The index f refers to the fibre from Le Nizerhy23 =

The errors between theory and experiment are due to manufacturing
imperfections and to the influence of interfacial adherance




| Figs 5&6
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microrotation (v,)
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(a) {vitesse v,) (b)

Key:
E UT%éction de propagation direction of propagation
Plan de 1'onde Tongitudinale (etc) plan of the longitudinal wave (speed v])
Plan de 1'onde & microrotation (etc) = plan of the wave with microrotation
(speed vy)
displacement wave (v3)
wave with microrotation (v4)

Onde de déplacement (v3)
Onde a microrotation (v4)

Fig 5 (a) Waves with longitudinal displacement and waves with micrgrotation
(b) Coupled transverse waves (speeds vz and v4) from Eringen38
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2 |
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(a) (b)

Fig 6 (a) Curve of the square of the speed vg (wave with microrotation)
as a function of pulse rate;

(b) Curve of the squares of the speeds 2 and 2 for transverse
3 4

waves and waves with microrotation as a function of pulse rate w .
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4 The we and wé puises can be seen. From Eringen38




Fig 7 Fibre-reinforced composite material.

Overall and local coordinates

Vitesse de phase

Théorie d'élasticité
—-—— Thé&orie raideur effective

s A n 2.

e
itesse de phase
Nombre d'onde

of effective stiffness.
of the layers.

1 2 3 4 5 6 7

Nombre d'onde

phase velocity
wave number

= theory of elasticity

-------- - = effective stiffness theory

Fig 8 Comparison between the theory of elasticity and the thecry
Longitudinal ve in the direction

y = uf/um

From Sun and Achenbach
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Fig 9

Vitesse de phase

T Y v v T

~ ~-— Théorie raideur

~——— Solution élastique

~— — — Theéorie raideur
effective - 1®"ordre

2&megrdre T

1tesse de phase
Nombre d'onde K

elastic

(a) System of coordinates at the boundaries for a multi-layer

composite material

(b) Comparison between the three theories of elasticity and

2 3 4 5, 6 7 8

Nombre d'onde K

phase velocity
wave number

solution

1st order effective stiffness theory
2nd order stiffness theory

1st and 2nd ordi{ of effective stiffness.

From Drumheller®!;

y = uf/um




' Figs 10&11

08
Théorie des mélanges
0.7 — — — Solution exacte
O Expérience
06}

‘Vitesse de phase (CM/[psec)

[¢] 1.0 20 30 40 50 6.0
Fréquence (Hz)

ok Wil dereean

Key:
VT%ésse de phase = phase velocity (cm/us)

Fréquence = frequency (Hz) ,
= theory of mixtures j
--------- = exact solution
0 = experiment

Fig 10 Phase velocity as a function of frequﬁncy. Carbon-phenolic
composite material. From Drumheller?

08,
Théorie des mé&tanges
- — — Solution exacte

A7k

0 Exp&rience

Vitesse de phase (CM/psec)

i 5} 10 20 30 40 50 60
Fréquence (Hz)

Key: ’
TE%E Fig 10)

Fig 11 Phase velocity as a function of freqx?ncy. Boron-phenolic
composite material. From Drumheller
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[ Fig 12

Voltmetre Osciitoscope

L
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Capteur
P //L)A :
[ 7 L < 9 /9 ))
Eprouvette
1]
Barre
Pot d'inertie
vibrant
.d/
Amphficateur Générateur
(a) (b)
Key:
VoTtmetre voltmeter

oscilloscope
measuring bridges

Oscilloscope
Ponts de mesure

Capteur pick-off
Eprouvette sample

Pot vibrant vibrating pot
Amplificateur amplifier
Générateur generator

Barre d'inertie = inertia bar

Fig 12 (a) Sketch of the principle of an elasticimeter with alternate
bending, for the determination of the complex Young's
modulus of composite materials.

(b) The sample is excited into alternate bending by a vibrating
pot. The torsion bars at the ends facilitate the display of
the vibrations. Determination of Coulomb moduli. The

S
~
[=]
o
! apparatus is similar to that shown in Fig 12(a)




- Goniometre

— |
C t $ { } + 3
L — -
- - - —}— Eau
I 1 I = Recepteur
Y=< -
L [ - Oscilloscope
—_— N
3 T |
Emetteur Eprouvette ‘
Genérateur e )
: Amplificateur
d'rmpulsions
Synchronisation :
(a) 1

R
' A
\ }
\d_} Amplificateur

Générateur Synchronisation
d'impulsions

Oscilloscope

(b)

Key:

Goniometre = goniometer

Eau = water

Récepteur = receiver p

Oscilloscope = oscilloscope i
i Emetteur = transmitter
} Eprouvette = sample
z Générateur d'impulsions = impulse generator

Amplificateur = amplifier

Synchronisation = synchronisation ]

e

Fig 13 Principles of measuring elastic constants by means of progressive
ultrasonic waves

(a) Immersion apparatus. The sample is fixed to a goniometer.
Either longitudinal waves or decoupled transverse waves
are obtained.

LT 2044

(b) Direct contact apparatus. The decoupled L or T waves are
obtained from transducers., Measurement of transit times




Fig 14

Area I: water - wave L

Area II: composite material. Curve A - quasi-longitudinal wave

Curves Band C: quasi-transverse waves (only curve B can be measured)

Curves DandE: radiation diagrams (velocity vectors) for quasi-
transverse waves

1

3

E

;

]

3

E

b

i

Fig 14 Slowness (inverse of speeds) diagram for the ultrasonic wave ?
across a water-composite material interface, for a Kevlar 3
PRD 49 composite material 3
3

mil o L

V0 is the velocity in water, kx and kz the numbers of waves in
the x and 2z directionssg.




Fig 15
Coiss .
daN/mm3 c‘3‘3=200daN/mm
/ZggdaNlmmz
S10¢ // C’313=798d
/ /N
7’ //
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Cy313=195da N/mm?
480}
= 2
Z{ Ci3,3=185daN/mm
25 30 35 40 45 50
R (degré)
Key:

egré = degrees

Fig 15 The use of a coupled ultrasonic wave to determine C]]33. Kevlar
composite material., C”33 curve as a function of the orientation
R taken from Garceau, Vinhsg.

The error perpetrated in C1313
shows in the value of 01]33. The stationary portion of the curve
is adopted for the calculation of C]]33
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Figs 16817
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4m -
/5h s

X nombre d'onde

Key:
ombre d'onde = wave number

Transverse wave:
------ theory
] experiment

Fig 16 Comparison between the theog?tica1 and experimental
dispersions. From Robinson®!, The pass-band regions
can be seen

Entrée

Fréequence, MHz

Sortie

14,7 19 13 15,2
Fréequenze , MHz

g = input
& Fréquence = frequency, MHz
e Sortie = output
-3
Fig 17 Fourier transform spectral analysis of the input and output
pulses, from Robinson
7




Figs 18&19
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Fig 18 Displacement measurement (in a shock test) by
interferometry
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Fig 19 Shock te
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of mixtures
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sts on a carbon-phenclic composite material.
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